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Abstract:
Digital twins (DTs) are prevalent throughout industrial domains as evidenced by the rapid pace
of experience reports in the literature. However, there remains disagreement about the precise
definition of a DT and the essential characteristics in the DT paradigm, such as the scope of the
system-under-study and the time-scale of its communication with the DT. These experience reports
could therefore be hampering further classification and research insights by not reporting all of
these relevant details about the DT solutions. We address these concerns by providing a conceptual
structure for DTs as a common understanding and checklist for researchers and practitioners
to precisely describe the characteristics and capabilities of their DT solutions. We express five
experience reports using our structure to demonstrate its applicability and role as a guideline to
improve the reporting of characteristics and increase the clarity of future experience reports.

1 INTRODUCTION
The digital twinning concept has seen a re-

cent explosion of interest in industry as system
designers, manufacturers, and users explore the
possibilities of having a digital version of their
system-under-study (SUS) available for simula-
tion. This is seen in multiple domains at multiple
levels of detail, from digital versions of factory ma-
chines (Min et al., 2019) to energy management
for a district in Helsinki (Ruohomäki et al., 2018).

Grieves et al. introduced the term ‘digital
twin’ (DT) in 2002 in the context of product life-
cycle management (Grieves and Vickers, 2017).
A DT was either the digital version of the pre-
manufactured product through the design cycle, or
a digital version of the product in use that evolves
to capture relevant detail and behaviour. This
definition has expanded to be applied to further
domains, such as “a DT is a virtual instance of
a physical system (twin) that is continually up-
dated with the latter’s performance, maintenance,
and health status data throughout the physical
system’s life-cycle” (Madni et al., 2019).

The promise of DTs is their ability to rea-
son about the system’s behaviour in the past,

present, and future under different conditions, en-
abling advanced system error detection and pre-
diction, visualization, optimization, or other ac-
tivities (Rasheed et al., 2020). For example, main-
tenance could be automatically scheduled by the
DT for machines based on the wear-and-tear data
collected from sensors (Werner et al., 2019). These
reasoning opportunities arise due to the combi-
nation of established modelling and simulation
techniques with recent technological capabilities
such as the Internet of Things (IoT), inexpensive
computing power, and big data techniques (Tao
et al., 2018a). This combination means that (in
a mature DT) a large amount of SUS data is
available for the DT to reason about, simulations
can be run faster-than-real-time to optimize the
system’s trajectory, and the SUS can be automat-
ically controlled for maximum performance.

Fuller et al. offer a comprehensive examination
of the DT concept (Fuller et al., 2020) by provid-
ing an overview of definitions, a description of key
challenges, and enabling technologies for DTs. A
literature survey divides works into the manufac-
turing, healthcare, and smart city domains.

Both the work of Fuller et al. and our own
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rely upon the classification of (Kritzinger et al.,
2018). It separates the concept of DTs into digital
models, digital shadows, and digital twins based
on the automation of the information connection
present. In a digital model, the information flow
(see Section 3.2) between the digital model and
the SUS is not automatic and all incoming and
outgoing information from the digital twin is man-
ually communicated and manually acted upon. In
a digital shadow (also termed a ‘tracking simu-
lator’), the incoming information such as a data
stream is automated but there exists no automatic
outgoing information being acted upon. Finally,
digital twins have both an incoming and outgoing
automatic information flow with the SUS, such as
outgoing automated control commands.

Identified Issues. We identify three key issues
in the DT literature: a) essential details about
the DT solutions (digital model, digital shadow,
or digital twin) are often not clear in experience
reports, b) this leads to uncertainty about the ca-
pabilities of DT solutions and their classification,
and c) the lack of multiple standard classifica-
tions then leads to miscommunication about how
practitioners view DTs in their domain.

The communication between the DT and the
SUS often lacks precision in experience reports. In
particular, whether the actions requested by the
DT are automatically or manually performed, at
what time-scale (real-time, slower-than-real-time)
these operations happen at, or the acting and
sensing component modifications required to the
SUS to support the DT. These details are essential
for researchers to properly characterize the DT
solution, understand their use by practitioners,
and develop further insights into the classifications,
usage, and possibilities of DTs.

For example, it is unclear if the experience
report presented in Section 2 has been misclassified
by (Fuller et al., 2020) as a digital shadow, rather
than a digital twin. This is due to uncertainty
whether there are automatic actions performed by
the DT solution in that report.

From the literature, it also is clear that there is
still uncertainty about what a DT is. The authors
have heard practitioners specify that the DT must
be used for real-time control of a system for it
to be a “true” DT, as in the proposed approach
of (Zhuang et al., 2018). Similarly, the DT could
act as an enhanced ‘tracking simulator’, where
the DT can automatically schedule maintenance
of a system, but does not perform real-time con-
trol (Werner et al., 2019). Other practitioners
use the term ‘digital twin’ for high-fidelity models

which replicate the physical system but do not
communicate with it (Miller et al., 2018).

While these three papers do describe ‘digital
versions’ of the real system or product, they are
very different in their capabilities. We therefore
argue that these practitioners are using the term
‘digital twin’ in differing ways in their domain,
and further analysis and breakdown of the term
in each domain is required to understand the real
power of the DT paradigm. We propose as a step
towards this analysis the identification of fourteen
essential characteristics and the construction of a
conceptual structure to be used for practitioner’s
reports about their solutions.
Contribution. This paper’s main contribution
is the presentation of a conceptual structure to
a) offer a summary for practitioners for the de-
scription of fourteen essential characteristics of
their DT solution, such as the time-scale of opera-
tions and fidelity, b) offer a common structure for
the description of DT architectures at a concep-
tual level for practitioners and researchers, and
c) emphasize a DT solution as a constellation of
modular components to support multiple usages
such as visualization or optimization.

This structure is evaluated by expressing in this
paper five experience reports from the literature,
with a further fifteen reports found online (Oakes
et al., 2020). This highlights the applicability of
the structure in providing structure for the expe-
rience reports to describe essential characteristics
of DTs, and how this unclear information can
hamper the classification of DT solutions. For
example, in six cases a different classification than
that of others is suggested.

2 MOTIVATION
This section motivates our proposed concep-

tual structure by examining a digital twin (DT)
experience report for a “human-robot collabora-
tive work environment” (Malik and Bilberg, 2018).
This report was selected for its recency, industrial
relevance, and complexity.

The experience report domain is an industrial
assembly process utilizing plastic and metallic
parts to assemble an (unreported) product, where
the production is high in volume and the diver-
sity of variants. Assembly is performed using a
human-robot collaborative system, combining the
flexibility of humans with the efficiency of ma-
chines. This collaborative system is challenging
however, as any changes to the process requires
new analyses for potential collisions between the
human and the robot, the workflow itself, and



PRE-PRINT VERSION

possibly the generation of new robot code.
The report suggests assistance for these analy-

ses using a DT. The data from the factory floor
such as the production requirements and inventory
is provided to the DT as input. This input is then
utilized for DT usages such as visualization, task
allocation between humans and robots, worksta-
tion layout/ergonomic analysis, and programming
the robot. Each usage is enabled through simu-
lation of the assembly task and optimization of
various parameters as defined by fitness metrics.
The DT then produces workspace planning, a task
allocation, and behavioural code for the robot.
Unreported Characteristics We find that es-
sential characteristics about the DT solution are
not reported in this report, and there is precision
missing which would be valuable to characterize
this DT and provide a basis for further research.

For example, the time-scale of the DT solution
is not clear as regards to each DT usage. As de-
scribed in Section 3.3.4, the time-scale of a DT
activity could be classified into slower-than-real-
time, real-time, or faster-than-real-time (utilizing
predictive simulations). The experience report
describes real-time data flowing into the DT, how-
ever all of the DT usages are described as “off-line”.
Therefore it is not clear if the DT utilizes predic-
tive simulations employing this real-time data as
it comes in, or whether the real-time data is sim-
ply a source of metrics for the off-line simulations
triggered when production parameters change.

Section 5 of the paper also mentions “real-
time performance metrics, optimization analytics
and alerts for a robot” supported by a commer-
cial robot analysis tool. It is therefore not clear
whether the DT produces insights into the as-
sembly workstation (such as a status dashboard)
based on this real-time data, or whether it is only
receiving the data for use in manually-activated
simulations and optimizations.
Difficulties with Classification As described
in the introduction, this precise information about
the DT activities can be crucial for researchers
and practitioners to classify the DT solutions ap-
propriately. For example, while the DT solution
in the report is discussed as a digital twin, it is
classified as a digital shadow by (Fuller et al.,
2020). They rely (as we do) on the classification
of (Kritzinger et al., 2018) who specify that the
distinctive characteristic of a digital twin com-
pared to a digital shadow is the automatic flow of
information from the digital object to the physical
object. In our reading of this experience report,
the distinction between digital shadow and digital

twin for this report comes down to whether there
exists an automatic procedure for adaptation of
controller code for the robots based on worksta-
tion conditions. If there is an automatic action
as described in Section 3.2.1, then their solution
may yet be a digital twin, but it is unclear from
the paper whether such a procedure exists. This
omission about the characteristics and capabili-
ties of the DT solution affects the classification
by not only Fuller et al., but also (Uhlenkamp
et al., 2019) who distinguishes between manual,
semi-automated, and automated data integration.
We therefore claim that having structured infor-
mation about the reported DT solution would
resolve this classification issue and could lead to
further valuable insights into DTs. This is demon-
strated in Section 3.5 by summarizing the main
characteristics of this experience report.

3 DESCRIBING DIGITAL
TWINS

This section focuses on our main contribution:
an organizational structure to describe digital
twins (DTs) and their relation to a system-under-
study (SUS). First, we present this relationship
and a few key aspects. Second, we emphasize
that DTs support multiple usages by describing
collections of supporting components. Finally, we
summarize essential characteristics of DTs, such
that practitioners can report the full details and
capabilities of their solutions so that they may be
precisely classified and understood.

The basis for our conceptual structure and se-
lected characteristics are a selection of experience
reports in the literature (Oakes et al., 2020). The
reports are inconsistent in the level of detail they
report for their DT solution characteristics, but
most report these selected characteristics, if only
briefly. Thus, from this commonality we claim
that these characteristics are essential for high-
quality reporting of a DT solution.
Relating Digital Twins to the System-Un-
der-Study The core of the DT concept is the
relationship between the DT and the SUS as visu-
alized in Figure 1. The DT is a black-box system
in this figure as it is further explored in Section 3.3.

Figure 1: Digital Twin and the System-Under-Study.
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3.1 System-Under-Study
As with any modelling activity, the SUS is the
central focus of the entire activity (Zeigler et al.,
2000). In our conceptual structure, the SUS in-
cludes not only one particular entity (system) or
set of interacting entities, but also the context (or
environment) of these entities. For example, the
system may be an aeroplane (composed of soft-
ware, signals, mechanical components, etc), along
with the influencing factors of its environment
(wind forces, temperature, etc.). As DTs originate
in the product manufacturing domain, the SUS is
commonly a realized physical system. However,
our structure and terms are applicable for either
a physical or virtual SUS.

The human or artificial intelligence (AI) agents
operating within this SUS may also be relevant
to what is considered the SUS by the practitioner
with respect to the DT. This is denoted in Figure 1
by the dashed extension box. An example of
these agents may be aeroplane pilots who interact
with the controls, or an AI agent scheduling job
allocations in a manufacturing process.

Our assumption is that the DT practitioner
has properly scoped their SUS to determine what
is relevant for the DT. As in, it is clear what is in
the system and the environment, and whether any
agents are part of the system (as in healthcare
applications (Liu et al., 2019)), the environment,
or outside of the SUS entirely. This division is
a highly complex part of any modelling activity
as it requires expert knowledge on the properties
of interest of the SUS and their influencing fac-
tors (Zeigler et al., 2000). Only the practitioner
can reason about and decompose their system (or
system-of-systems), therefore we group this collec-
tion of system, environment, and (possibly) agents
under the term ‘system-under-study’.

Figure 1 emphasizes the conceptual separation
of the DT and the SUS. In practice, they may be
intertwined as a DT could be embedded into the
SUS as a controller of system behaviour. In this
case, the DT and the SUS influence each other by
competing for processing or memory resources or
through temperature effects.

3.1.1 Acting and Sensing Components
Implementing a DT of a SUS may necessitate
modifications to the SUS to support the (uni- or
bi-) directional information connection between
the DT and the SUS (Chhetri et al., 2019). Our
conceptual structure specifies that practitioners
should highlight the (interesting) acting or sensing
components of the SUS which support this con-

nection to the DT, as this could help researchers
and practitioners understand the cost and effort
required to connect a SUS to a DT.

Acting components enable control over the sys-
tem by the DT. These components receive (auto-
matic or manual) actions from the DT and agents,
and perform some actions on the SUS itself. For
example, a Programmable Logic Controller (PLC)
embedded within a manufacturing machine may
adjust digital parameters or physical actuators.

Sensing components obtain and transmit data
for the DT. For example, this may be a humidity
sensor connected to a radio network, or the addi-
tion of a Product Life-cycle Management system
to store product data (Tao et al., 2018a).

The division between these acting and sensing
components, and the underlying SUS is (neces-
sarily) blurry. For instance, these components
are part of the SUS as they may have direct ef-
fects on the system itself, such as power draw,
temperature effects, etc. These components may
also exist as part of the original SUS and be re-
purposed for the DT activity. In any case, as
these components are essential to support the DT
activity, they must also be considered part of the
DT solution. The exact separation may not be
of consequence, but the experience report should
explain their interactions precisely.

3.2 Connection
The connection between the DT and SUS forms
the backbone of the DT activity (Grieves and
Vickers, 2017). For example, a change in state or
behaviour in the SUS is reflected in the DT, or an
action commanded by the DT is communicated
to the SUS to be acted upon, as represented by
the bridging arrows in Figure 1.

The characteristics of this connection is the
defining feature which separates a digital repre-
sentation into a digital model, digital shadow, and
digital twin as defined in (Kritzinger et al., 2018).
As a recap, if there is no automatic information
flow from the SUS towards the digital represen-
tation (e.g. no “live” data from the system), the
digital representation is a digital model. If there
is no automatic information flow from the digital
representation towards the SUS (e.g. no actions
commanded on the SUS), then the digital represen-
tation is a digital shadow or “tracking simulator”.
3.2.1 Data, Insights, and Actions
The data, insights, and actions in this connection
depend on the precise DT activities.

Data is any information, such as sensor data,
flowing from the SUS to the DT. This data flow
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may be automatically performed, or entered into
the DT solution manually.

Insights are actionable pieces of knowledge ob-
tained about the SUS by utilizing the DT for
reasoning. These insights are then be transmit-
ted to agents who may (or may not) provoke a
change in the SUS, such as system designers or
engineers. For example, a factory’s geometry and
worker behaviour could be simulated such that
insights would be used to provoke the designers to
modify the factory layout (Zhuang et al., 2018).

Automatic actions are those commands sent
by the DT to directly modify the SUS, such as
automated control signals to direct SUS compo-
nents ordered by the DT (Min et al., 2019). Agent
actions are those where the agents provoke a SUS
change either physically or digitally.

Based on the classification of (Kritzinger et al.,
2018), our conceptual structure specifies that only
when there is automatic data flowing from the
SUS to the DT, and automatic actions flowing the
other way, that the digital solution is a true digital
twin. That is, there must be a two-way automatic
connection between the DT and the SUS.
3.2.2 High-Fidelity
A crucial aspect of this connection between the
DT and the SUS is its level of fidelity. Clearly,
the DT must have “sufficient fidelity” and (ad-
equately) reflect the state and behaviour of the
SUS. For example, (Zhidchenko et al., 2018) create
a simplified model to predict the trajectory of a
mobile crane. The goal is to balance simulation of
the model in real-time against the approximation
of complex reference behaviour.

However, the fidelity between the DT and the
SUS cannot be summarized broadly. Instead, this
fidelity is defined only with respect to the particu-
lar usage (or usages) of the DT (cf. Section 3.3.1),
for the properties-of-interest relevant to that us-
age. For example, if the usage of a DT is the
visualization of a factory for training purposes,
then only the geometry and colours of the factory
may need to be represented at a relatively coarse
level of precision, and not the humidity of the air.

It is therefore more precise to state that the
DT must have sufficient fidelity to the SUS for
the properties relevant to each of the DT’s us-
ages. That is, the DT must adequately reflect the
current state of the SUS for those properties (at
least). If this is not the case, the DT cannot sup-
port that usage and cannot provide the required
insights and actions, and therefore fails as a “mir-
ror” of the SUS (Worden et al., 2020). This lack
of fidelity could occur when a practitioner has not

sufficiently defined the influencing factors on the
system and modelled them appropriately in the
DT (Traoré and Muzy, 2006).

Our emphasis on fidelity with respect to the
usages of a DT is to steer practitioners away from
defining any high-fidelity model as a DT. This is
not sufficiently precise as a model has only high
fidelity with regard to certain properties-of-interest.
These properties arise through the analysis and
modelling of the SUS (Zeigler et al., 2000) and
are related to the usages of the DT.
3.2.3 Multiplicity
Our conceptual structure requires that the multi-
plicity of the relationship between the SUS entities
and the DT be explicitly specified to understand
a) what are the entities in the SUS that the DT
is reasoning about and operating on, and b) how
many DTs are present that obtain information on
and influence the SUS. The establishment of the
information flow of insights, actions, and data can
only be accomplished if there is a many-to-one
relationship of DTs to the SUS. In other words, a
DT must be connected to exactly one SUS for the
system’s scope to be properly determined.

For example, consider a system of flying drones.
A DT could be constructed for each individual
drone, which takes data from that drone and pro-
vides insights or actions. Thus a group of DTs is
created where each DT is connected to a particu-
lar drone, termed a DT Aggregate by (Grieves and
Vickers, 2017). Another approach is to build a DT
where the SUS is the swarm of drones itself, or the
statistical measure of the “average” or “typical”
drone. That is, data from all drones is collected at
one central DT and actions are sent to the swarm
as a conceptual collective to control the individu-
als. These approaches would be selected based on
the available resources and system design.

3.3 Digital Twin Layers
Our conceptual structure decomposes the DT it-
self into three sections: a) the usage of that DT,
b) the enabling components for that usage, and c)
the models and data used by those enabling com-
ponents, as seen in the DT Instance in Figure 2.
This division serves to a) offer practitioners more
structure in describing their DT solution, and b)
emphasize the modular nature of DTs and how
slices can be created to support different usages.
3.3.1 Usages
The usage of a DT is the purpose with respect
to the SUS, where benefit is brought (directly or
indirectly) to the SUS. For example, a DT may
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Figure 2: An overview of our conceptual structure for describing digital twins.

monitor the SUS and command modifications to
SUS parameters as a usage of process optimiza-
tion, or for visualization for design or for training
maintenance workers on different scenarios. A
third usage is for anomaly detection where the
DT tracks the system to perform safety actions
when the system is outside of its safe operation
range. (Tao et al., 2018a) present further usages
for product design throughout the life-cycle stages.

In our conceptual structure, a particular DT
is restricted to supporting exactly one usage. Sec-
tion 3.4 discusses a DT structure for multiple
usages which we term a constellation. This re-
striction of a DT to one usage scopes the descrip-
tion of that usage’s data requirements, insights
and actions, time-scale, and fidelity considerations.
Providing this granularity allows researchers and
practitioners to better understand the cost-benefit
impact for adding new usages to a DT solution.
3.3.2 Enablers
The enablers are (conceptually) below the usages,
and are those components of the DT that operate
on the models and data in the DT and directly
enable a usage. This definition for enablers is in-
tentionally broad to support many types of compo-
nents serving usages across different DT domains.
For example, (Werner et al., 2019) discuss how a
predictive maintenance usage is enabled by a state
predictor/simulator based on machine metrics. A
video game engine like Unity (https://unity.com/)
enables virtual spaces for visualization of personal
health metrics (Mohammadi and Taylor, 2020).
3.3.3 Models and Data
Finally, the models and data used by the DT are
grouped together on a (conceptual) layer and are
both input and output for the enablers. For exam-
ple, data could be input into a machine learning
trainer (an enabler) to produce a neural net (a
model) (Min et al., 2019).
3.3.4 Time-Scales
An essential characteristic of DTs is that the com-
munication between the SUS and the DT for a
usage most likely occurs at different time-scales.

A usage’s insights, actions, and data communi-
cation could each occur as slower-than-real-time
or real-time, and the usage itself could rely on
slower-than-real-time, real-time, or even faster-
than-real-time reasoning.

If an insight, action, or data collection step is
slower-than-real-time, that part of the cycle is not
real-time “live” but instead the DT periodically
receives data from the SUS, or issues insights or
action to the SUS for some future time. For ex-
ample, a predictive maintenance DT could receive
real-time machine sensor information, but issue
insights to a scheduling agent to modify worker
routines for a later shift (Werner et al., 2019).

A real-time time-scale is where the action or
data collection is communicated between the SUS
and the DT for reasoning and provoking of an
action on the SUS within a short-scale (most likely
sub-second) time-frame. All examples of real-time
control by a DT include this time-scale, such as
production-time control (Zhuang et al., 2018).

Finally, the faster-than-real-time time-scale is
where the enablers for a usage perform predictive
simulation to predict the state of the SUS in the
(near-)future. This faster-than-real-time simula-
tion is then used to produce insights and actions,
such as slower-than-real-time insights or actions
like workstation layout modifications (Malik and
Bilberg, 2018), or real-time trajectory optimiza-
tion for crane control (Zhidchenko et al., 2018).

The collected examples in Section 4 (and on-
line (Oakes et al., 2020)) demonstrate how a DT
solution most likely involves communication at all
three time-scales. The time-scale characteristic
of DT communication is explicitly expressed in
our characteristics, as practitioners could have the
belief that a “true” DT is only those that have
“hard real-time” control connections. We leave this
particular interpretation open for now, but our
conceptual structure provide the guidelines for
experience reports such that future research can
discuss classifications in each practitioner domain.

https://unity.com/
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3.4 Constellations and Slices
One benefit of DTs is that once there is a critical
mass of high-quality enablers, models, and data,
then multiple usages become possible (Uhlemann
et al., 2017). Our conceptual structure denotes a
DT constellation as an agglomeration of all related
models, data, enablers, and usages that are used
in the DT activities involving a particular type of
SUS, as shown on the left-hand side of Figure 2.

A particular enabler may support multiple us-
ages within a constellation, and a model or piece of
data may be operated upon by multiple enablers.
For example, in Figure 2, enabler E1 supports
usages U1 and U2, while enabler E2 supports us-
ages U2 and U3. Figure 3 presents a constellation
for the experience report in Section 2.

A DT slice is then the selection of components
in a DT constellation to support a particular usage.
For example, in Figure 2 one out of a possible
three DT slices is represented by the dashed lines
around the components which support usage U1.
This slice can then be implemented by any number
of DT instances, as represented in the middle of
Figure 2, where prime marks denote an instance
of a slice. These slices therefore reinforce the
modular nature of DTs, where the enablers and
models and data are reused for multiple usages
within a DT constellation.

Note that the DT constellation and DT slice
are conceptual objects to group components of the
DT activity for description purposes. Constella-
tions and its slices likely do not exist either physi-
cally or virtually in the practitioner’s DT solution.
In contrast, the DT instance must be running on
a computational device, and the connected SUS
must exist in the physical or the virtual world.

3.4.1 Life-cycle Stages
DTs in the literature operate at various stages
in the life-cycle of a system. These stages are
not fixed and have domain-specific terms such
as design, pre-production, and production (Söder-
berg et al., 2017), or ideation, realization, and
utilization (Leinen, 2017). (Pokharel and Mutha,
2009) also consider a reclamation life-cycle stage,
involving disassembly and re-use in new products.

As the SUS moves through the stages of its
life-cycle, the usages of its connected DTs and the
scope of the SUS will likely change. For exam-
ple, during the ideation phase a DT may offer
optimization and visualization usages for product
design (Tao et al., 2019). During later stages, the
SUS may then expand to encompass the manu-
facturing facility and worker’s routines, where the

optimization usage must then consider new objec-
tives and parameters (Söderberg et al., 2017).

Our conceptual structure thus suggests a report
of a DT solution includes the usages and scope
for the SUS (if different) for each of the life-cycle
stages in the solution. This assists researchers
and practitioners in classifying their DT solutions,
identifying challenges, and recommending useful
enablers for each life-cycle stage. For example,
assembly and disassembly processes for a product
may share enablers provided by a DT solution.

3.4.2 Evolution
As practitioners build up techniques and tools and
discover new DT requirements, the solution and
its constellation evolves to support further usages
across the life-cycle stages, and between different
product versions. For example, (Söderberg et al.,
2017) report seven DT usages spread across three
phases of the product life-cycle but not the order
of their development.

Providing information on the evolution of the
constellation could enable further classifications
and research insights into DTs. An example
could be identification of whether the digital
model (Kritzinger et al., 2018) used in the de-
sign stage is often first transformed into a digital
shadow (as in (Min et al., 2019)), or whether it
is directly used as the basis for a digital twin.
Another example would be scheduling the imple-
mentation of design-stage usages in parallel with
the pre-production and production stage usages.

3.5 Essential Characteristics
This section provides a summary of the essential
aspects of our conceptual structure to provide a
structured list for the precise reporting of DT
characteristics in future experience reports.

We present here brief details from the collabo-
rative assembly experience report detailed in Sec-
tion 2. This demonstrates that even with a high-
quality report, there are still characteristics that
remain unclear such as the time-scale of certain
insights and actions, as denoted with a question
mark. As discussed in Section 2, these missing
details hamper the classification and capabilities
of this experience report.

Due to space reasons, only the briefest sketch of
relevant details is presented here. This summary
is far less than the level of detail we expect prac-
titioners to provide in their experience reports.

System-under-study - The scope of the SUS
including the system, environment, and agents. A
collaborative assembly process, involving humans,
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Figure 3: A possible DT constellation for (Malik and
Bilberg, 2018).

robots, workstation, an assembly station, produc-
tion steps, and product parts.

Multiplicities - How many DTs and SUS en-
tities are involved in the solution, and their rela-
tionship. DT instances exist for each workstation
in the assembly process.

Usages - The activities the DT is used for.
Task allocation between humans and robots, lay-
out generation for the workstation, ergonomic
analysis, and robot code generation.

Enablers - The DT components which use
models and data to support usages. A visualiza-
tion engine for the layout usage, task planner for
allocation, workstation simulator, code generator
for robot programming.

Models and Data - The input and output for
enablers. Computer-aided design (CAD) models
for human, robot, and workstation, motion data
from three-dimensional camera, shop-floor data
(inventory, etc.), production plans.

Slices - Relationships between usages, enablers,
and models and data. Our impression of the DT
constellation for this report is seen in Figure 3.

Fidelity Considerations - Explanations of
fidelity of DT to SUS with respect to each DT
usage. For layout and ergonomic usages, worksta-
tion and robot geometry must be accurate within
a few millimeters(?). Human model corresponds
to a typical Danish worker. For task allocation
usage, shop floor data has slight variations(?).

Data Communicated - What is transferred
from SUS to DT. Manual: Production require-
ments(?) Auto: Inventory data, robot data.

Insights and Actions - What is communi-
cated from DT to SUS. Insights: Task alloca-
tions, workspace layout, assembly procedure and
configuration. Actions: Robot code(?).

Time-Scale - The time-scale of the data, in-
sights, actions, and simulations used. Slower-
than-real-time: Production requirements, task
allocations, workspace layout, assembly procedure
and configuration, robot code. (Unclear, could
be real-time on “production changeover”) Real-
time: Inventory and robot data. Faster-than-

real-time: Task allocation and ergonomic usages.
Acting Components - Add./modif. to SUS

enabling DT actions and insights. Not reported.
Sensing Components - Add./modif. to SUS

enabling DT data collection. Not reported.
Life-cycle Stages - The stages of the life-

cycle that the DT is utilized for, the usages for
each, and (if varying) the scope of the SUS. De-
sign: Task allocation, workstation layout, er-
gonomic analysis. Development: Workstation
layout (?). Operation: Task allocation, worksta-
tion layout, ergonomic analysis, code generation.

Evolution - How the DT evolves over the DT
project timeline. Visualization developed, then
event-based simulation.

3.6 Threats to Validity
A major threat to validity of our conceptual struc-
ture is whether the fourteen characteristics we
have presented here are essential for practitioners
to communicate in their experience reports. This
threat has been addressed by selecting those com-
mon characteristics which were discussed (at least
briefly) in the considered experience reports in the
literature (Oakes et al., 2020).

A related threat is the applicability to DTs
in different domains, and that it is insufficiently
detailed enough for practical usage. This threat is
partially addressed by providing examples of the
conceptual structure’s usage for multiple experi-
ence reports, both in this paper and online (Oakes
et al., 2020). The conceptual structure is also at a
general level, including broad characteristics such
as enablers and models and data.

Our selection of relevant characteristics will
never be sufficient for all domains, as many other
dimensions are relevant for stakeholders in partic-
ular domains. A few examples include the par-
ticular technology solutions used, the business
case and stakeholders for each usage, or cyber-
security considerations. It is therefore our hope
that researchers and practitioners will use our
conceptual structure as a starting point, and even-
tually coalesce around a particular set of defined
characteristics for each individual DT domain.

4 APPLICATION EXAMPLES
This section examines four selected works from

the literature described as digital twins (DTs), us-
ing our conceptual structure to produce a table of
characteristics (Table 1). This section is to demon-
strate applicability to DT solutions in multiple
domains, and highlight how this structure ensures
that these characteristics are reported to assist
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with further classification and insights. As a visual
guide, missing entries are marked in bold, while
unclear information is marked in italics. Simi-
lar to Section 3.5, only the briefest of details are
reported here due to space considerations.

Boat Avatar (Wuest et al., 2015) describe a
“product avatar” approach where the information
from sensors on leisure boats is used to provide
services to manufacturers and boat owners. For
example, maintenance information is collected dur-
ing the winter season when boats are in storage,
and service offers are relayed to service providers
and boat owners to offer repairs or refurbishment.

(Uhlenkamp et al., 2019) identifies this expe-
rience report as a “digital twin application sce-
nario”. However, this report is difficult to classify
according to (Kritzinger et al., 2018) as it mostly
describes a digital shadow where no automatic
actions are commanded. We have identified one
possible action: boat information could be au-
tomatically posted to social networks. Further
clarification by the authors is therefore required
to classify the DT solution as a digital twin.

As well, it is difficult to understand the precise
system-under-study (SUS), insights, and actions
involved. In particular, in Table 1 we have placed
the boat manufacturers and the boat owners as
agents and as part of the SUS, but this may not
be the intention of the report authors.

Cyber Guided Vehicle (Bottani et al., 2017)
detail the creation of a simulation for an Auto-
mated Guided Vehicle (AGV) in the context of a
job-shop where the AGV transports materials to
be assembled. The same code from the AGV runs
inside the simulation, which is used to optimize
the AGV’s policies for maximum profit.

This report also lacks relevant details about the
DT solution. In particular, Table 1 in (Kritzinger
et al., 2018) claims that this solution is a digital
twin. However, from our reading the only com-
munication between the digital object and the
physical AGV would be the policies or AGV code.
It is unclear whether this communication would
be automatic to and from the AGV to the digital
object and how often this would occur. This expe-
rience report may thus describe a digital shadow.

Oil and Gas Drilling (Mayani et al.,
2018) report the successes of using DT technology
by a Norwegian oil and gas technology provider.
Four uses of the DT technology at three oil and
gas wells for monitoring and training purposes
are discussed, as well as the cost- and time-saving
benefits. As drill parameters are optimized based
on the digital object, the overall solution is a digi-

tal twin by the classification by (Kritzinger et al.,
2018). However, the training usage of the solution
may not lead to automated control actions with
the SUS, thus indicating that the DT solution acts
as a digital shadow for some usages.

Petrochemical Optimization (Min et al.,
2019) provide an excellent report on the use of
digital twins for optimization of petrochemical
production. Data from factory sensors undergoes
cleaning such as time series unification, before
it is used alongside historical data for machine
learning training and prediction. The DT solution
determines recommendations and control actions
to improve the economic potential of the plant,
such as by increasing the yield of light oil.

As this report explicitly mentions the use of
control actions on the plant, our reading suggests
it is a digital twin as per the classification by
(Fuller et al., 2020). However, this report is clas-
sified as a digital shadow, possibly due to the
ambiguous sentence “[the output], real-time rec-
ommended control information, is viewed by oper-
ators first before being utilized in the production
system”. It is therefore not clear if the control
information is presented as insights, or is an action
on the system. The capabilities and classification
of this DT solution would therefore be clarified
when presented in our conceptual structure.

5 RELATED WORK
Structured DT Definitions
(Grieves and Vickers, 2017) define DT Prototypes,
DT Instances, and DT Aggregates. DT Proto-
types exist only in the design stage of a system,
before being realized as a Physical Twin. Each
Physical Twin is then monitored and acted upon
by a DT Instance. A collection of DT Instances
is a DT Aggregate. This structuring parallels our
own, where DT Prototypes would be the models
and data involved in a DT Constellation while
the DT Constellation operates in the design stage
of a system. The concept of the DT Instance is
the same as a particular instance of a DT com-
municates with a system-under-study (SUS). Our
structure requests that the multiplicity of the DTs
with relation to the SUS be explicit for clarity,
such as whether multiple DT instances are aggre-
gated to form a DT of a larger system.

(Tao et al., 2018b) present a five-component
structure for relating DTs and the SUS: a) the
physical entity model which is the SUS including
sensors and actuators, b) the virtual equipment
model including models and behaviour description,
c) a services model with the usages of the DT and
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Table 1: Four digital twin experience reports as presented in our conceptual structure.

Expr.
Report

Boat Avatar (Wuest et al.,
2015)

Cyber Guided
Vehicle (Bottani
et al., 2017)

Oil and Gas
Drilling (Mayani et al.,
2018)

Petrochemical
Optimization (Min et al.,
2019)

System-
under-
study

Leisure boats and stakeholders
(owners, manufacturers,
social networks) (?).

Auto. guided
vehicle (AGV) in
job-shop prod.
system.

Performance of and
forces on drilling rig.

Catalytic cracking unit in
petrochemical production
line.

Multipl. DT instances per boat. DT instances per
prod. system.

DT instances per drill
site.

DT instances per unit.

Usages Optimizing design/production,
enhancing boat experience,
upgrade services.

Optimizing
policy for system
profit,
visualization.

Planning, training,
operation forecasting.

Production optimization.

Enablers Production decision support,
web presence, maintenance
recommenders.

Simulator, AGV
controller.

Sim. of performance
and forces, auto.
monitoring.

“Profit and market
modelling systems”, “sim.
and opt. systems”,
machine-learning algs.

Models &
Data

Data from boat, predictive
models for maintenance
recommenders.

Model of shop,
AGV code, prod.
data.

Sensor data, hydraulic
and mechanical models.

Machine learning models,
historic data.

Slices [Omitted for space] Same slice for
usages.

[Omitted for space] Unclear.

Fidelity
Consid.

Realistic for optimizing and
services, less realistic for boat
experience. Not explicit.

Realistic for
optimization,
less realistic for
viz. Not explicit.

Highly realistic for
planning and
forecasting, realistic
for training. Not
explicit.

Realistic. Data must be
cleaned and aligned before
processing.

Data
Comm.

Auto: Assorted boat
conditions, such as
battery/fuel level, current
weather, maintenance status,
position, etc.

None (possibly
code?).

Auto: Temperature,
pressure, etc.

Production plans,
production line data.

Ins. &
Act.

I: Boat info., service
recommendations & offers. A:
Posting to social networks(?).

I/A(?): AGV
controller code.

I: Performance reports.
A: Drill control signals.

I: ”Analysis data” and
recommendation info. A:
Control instructions.

Time-
Scale

Slower-t-r-t insights, real-time
data, real-time posting to
social networks (?).

Slower-t-r-t. Slower-t-r-t for reports
& training, real-time
for control, faster-t-r-t
for sim.(?).

Slower-t-r-t historical data
and insights, real-time data
and control actions.

Acting
Compon.

Created web platform
integration.

No compon.
additions
reported.

No compon.
additions reported.

“Industrial IoT systems”,
such as “electric and
electronic circuits”

Sensing
Compon.

Product Life-cycle
Management system, data
integration layer

No compon.
additions
reported.

No compon.
additions reported.

Measuring instruments,
“sampling, preprocessing
and injection systems”,
monitors and recorders.

Life-cycle
Stages

Ideation, realization,
utilization, reclamation. SUS:
No manufacturers in middle
stages (?).

Utilization. Ideation, realization,
utilization.

Utilization.

Evolution Usages created, then data
connection, then insight/action
connection.

Not reported. Used for training, then
used for control(?).

Basic DT constructed, then
trained on existing data,
then connected to SUS.

Class. DS/DT (?) DS/DT (?)
(versus DT
by (Kritzinger
et al., 2018))

DT DT (versus DS by (Fuller
et al., 2020))
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include quality information, d) a DT data model
to structure the domain knowledge of the DT,
and e) a connection model which structures the
incoming or outgoing data from the DT, such as
variable type and sampling interval. In contrast,
our structure is at a higher level of abstraction and
is not about technical details but only a summary
of the characteristics and capabilities.

Further work by (Tao et al., 2019) focuses on
the use of DTs for product design and manufac-
turing, such as enabling technologies for DTs and
a ‘V-cycle’ for validating and verifying product
design. Also relevant is the investigation of the
steps of building the DT for product design, which
is similar to our concept of evolution. These steps
involve the creation of the virtual product and its
connection with the physical product, where the
DT solution moves from a digital model through
a digital shadow stage to become a digital twin.

(Worden et al., 2020) take a mathematical ap-
proach to DTs where mirrors are defined which
replicate the behaviour of a system in an environ-
ment and context according to a fidelity measure.
These Turing mirrors must provide the same an-
swers to questions as the original physical system.
This is relevant to our work as it formalizes our
fidelity characteristic.
Digital Twin Aspects/Characteristics
(Boschert and Rosen, 2016) discuss the use of DTs
for simulation throughout a system’s life-cycle
stages and the need for DTs to be modular to
fit into value chains. The DT purpose may also
change due to the current life-cycle stage of the
system or the maturity of the DT itself.

Similar to our work, (Uhlenkamp et al., 2019)
present seven characteristics of DTs. Goals refer
to the abilities of the DT and include informa-
tion acquisition, information analysis, decision
and action selection and action implementation.
Users focus on one user or multiple stakeholders.
Life-cycle focus can likewise be a single stage or
multiple. A system focus can be component, sub-
system, system, or system of systems. Data sources
for a DT include measurements, virtual data (in-
cluding simulation data), and (expert) knowledge.
Data integration levels replace the classification
of (Kritzinger et al., 2018) with manual, semi-
automated, and automated. Finally, their charac-
teristics include authenticity which we refer to in
our conceptual structure as fidelity. While rele-
vant, we demonstrate in Section 2 that further
characteristics and detail may be required in cur-
rent experience reports to apply their structure.

According to (Madni et al., 2019), DTs are an

enabling technology in the next steps of model-
based system engineering (MBSE). A comprehen-
sive examination of DTs within the context of
MBSE is presented, along with a classification
of DT maturity throughout the life-cycle of the
system of pre-DT, DT, adaptive DT, and intelli-
gent DT. Relevant to our work is a list of char-
acteristics which separates DT from traditional
computer-assisted design (CAD) models, including
specificity, understanding assumptions and perfor-
mance, and traceability among others.

(van der Valk et al., 2020) propose a DT taxon-
omy with characteristics and relationships, while
(Jones et al., 2020) details a literature survey.
These works propose further characteristics of DTs,
but do not create a conceptual structuring.

6 CONCLUSION
This paper presents a conceptual structure for

describing digital twins (DTs) such that practition-
ers can structure their reporting and ensure they
describe essential characteristics and capabilities
in their experience reports. In turn, this provides
a firmer foundation for the DT research commu-
nity to gain further insights into challenges and
solutions, and offer a more precise classification of
the DT types in practice. It is our ambition that
this structure serves as a common reference to en-
able clear communication of DT solutions between
academic and industrial stakeholders. The applica-
bility of the structuring and its use in structuring
a report and indicating missing characteristics has
been demonstrated by expressing multiple experi-
ence reports from the literature. This has revealed
six cases where the suggested classification differs
from that of others (Oakes et al., 2020).
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Traoré, M. K. and Muzy, A. (2006). Capturing the
dual relationship between simulation models and
their context. Simulation Modelling Practice and
Theory, 14(2):126–142.

Uhlemann, T. H.-J., Lehmann, C., and Steinhilper,
R. (2017). The digital twin: Realizing the cyber-
physical production system for industry 4.0. Pro-
cedia CIRP, 61:335–340.

Uhlenkamp, J.-F., Hribernik, K., et al. (2019). Digital
twin applications: A first systemization of their
dimensions. In 2019 IEEE International Confer-
ence on Engineering, Technology and Innovation
(ICE/ITMC), pages 1–8. IEEE.

van der Valk, H., Haße, H., et al. (2020). A taxonomy
of digital twins. In AMCIS 2020 Proceedings.
AIS.

Werner, A., Zimmermann, N., and Lentes, J. (2019).
Approach for a holistic predictive maintenance
strategy by incorporating a digital twin. Procedia
Manufacturing, 39:1743–1751.

Worden, K., Cross, E. J., et al. (2020). On dig-
ital twins, mirrors and virtualisations. In
Barthorpe, R., editor, Model Validation and Un-
certainty Quantification, Volume 3, pages 285–
295. Springer.

Wuest, T., Hribernik, K., and Thoben, K.-D. (2015).
Accessing servitisation potential of PLM data by
applying the product avatar concept. Production
Planning & Control, 26(14-15):1198–1218.

Zeigler, B. P., Kim, T. G., and Praehofer, H. (2000).
Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic
systems. Academic press, San Diego.

Zhidchenko, V., Malysheva, I., et al. (2018). Faster
than real-time simulation of mobile crane dy-
namics using digital twin concept. In Journal of
Physics: Conference Series, volume 1096, page
012071. IOP Publishing.

Zhuang, C., Liu, J., and Xiong, H. (2018). Digital
twin-based smart production management and
control framework for the complex product assem-
bly shop-floor. The International Journal of Ad-
vanced Manufacturing Technology, 96(1-4):1149–
1163.

https://msdl.uantwerpen.be/git/bentley/2020.MODELSWARD.DT
https://msdl.uantwerpen.be/git/bentley/2020.MODELSWARD.DT

